Correlation of binary coexistence curves of liquid-liquid equilibria over a wide temperature range using a new local composition model

Isamu Nagata^{a,*}, Marek Rogalski^a and Kaoru Miyamoto^b

^a Laboratoire de Thermodynamique Chimique et Appliquée, U.R.A. C.N.R.S. 1108, Ecole Nationale Supérieure des Industries Chimiques, Institut National Polytechnique de Lorraine, 1, rue Grandville, BP N° 451, 54001 Nancy Cédex (France) ^b Department of Chemistry and Chemical Engineering, Kanazawa University, 40-20, Kodatsuno 2-chome, Kanazawa 920 (Japan)

(Received 5 January 1993; accepted 27 January 1993)

Abstract

A new local composition model with two energy parameters is used to correlate mutual solubility data over a wide temperature range for many mixtures. The energy parameters can be expressed by a quadratic function of temperature. Three types of coexistence curves are studied: I, systems with an upper critical solution temperature (UCST); II, systems with a UCST and a lower critical solution temperature (LCST); III, systems with a LCST. Prediction of the activity coefficients and excess molar enthalpies in the miscible region is discussed.

LIST OF SYMBOLS

a_{21}, a_{12}	binary energy parameters
A_{21}, B_{21}, C_{21}	coefficients of eqn. (9)
A_{12}, B_{12}, C_{12}	coefficients of eqn. (10)
8 ^E	excess molar Gibbs free energy
$g_{\rm comb}^{\rm E}$	combinatorial term of g^{E} function
n	index
<i>r</i> _i	molecular size parameter of pure component i
R	universal gas constant
Т	absolute temperature
\boldsymbol{x}_i	liquid-phase mole fraction of component i

^{*} Correspondence to: I. Nagata, Department of Chemistry and Chemical Engineering, Division of Physical Sciences, Kanazawa University, 40-20, Kodatsuno 2-chome, Kanazawa 920, Japan.

Greek letters

α, β	liquid phases in equilibrium
$\boldsymbol{\gamma}_i$	activity coefficient of component i
$ au_{21}, au_{12}$	binary parameters as defined by eqns. (7) and (8)
$oldsymbol{\phi}_i$	segment fraction of component i
${oldsymbol{\phi}}_i'$	modified segment fraction of component i as defined by eqns. (3) and (4)
$ ho_{12}$	r_2/r_1

INTRODUCTION

Theoretical discussions of lower critical solution phenomena have been presented by several authors [1–7]. Most of these theories are quite complicated with only qualitative results and are of no practical use, even though some of them give a good agreement with experimental findings. In this paper we present a more practical approach to obtain a good description of three types of phase separation for many binary systems: I, systems with an upper critical solution temperature (UCST); II, systems with a UCST and a lower critical solution temperature (LCST); III, systems with a LCST. As part of a study on the performance of a new two-parameter local composition on phase equilibrium data reduction, we present some calculated results on mutual solubility data over a wide temperature range.

SOLUTION MODEL

Nagata [8] proposed the following model for the excess molar Gibbs free energy

$$\frac{g^{\rm E}}{RT} = x_1 \ln \frac{\phi_1}{x_1} + x_2 \ln \frac{\phi_2}{x_2} - x_1 \ln(\phi_1 + \phi_2 \tau_{21}) - x_2 \ln(\phi_2 + \phi_1 \tau_{12})$$
(1)

where ϕ is the segment fraction and τ is the binary adjustable parameter. Equation (1) has been successfully used to describe the thermodynamic properties of alcohol solutions with allowance for the association of alcohol molecules and the solvation of alcohol with active non-associating components. Equation (1) is equivalent to the Wilson equation, which is very useful only for completely miscible mixtures. In order to make the Wilson equation applicable to partially miscible mixtures, additional parameters can usually be included in the Wilson equation [9]. To apply eqn. (1) to partially miscible mixtures, we modify the combinatorial term of eqn. (1) as suggested by several investigations [10–14]

$$\frac{g_{\text{comb}}^{E}}{RT} = x_1 \ln \frac{\phi_1'}{x_1} + x_2 \ln \frac{\phi_2'}{x_2}$$
(2)

where the modified segment fractions ϕ'_1 and ϕ'_2 are given by

$$\phi_1' = \frac{x_1 r_1^n}{x_1 r_1^n + x_2 r_2^n} \tag{3}$$

$$\phi_2' = \frac{x_2 r_2''}{x_1 r_1'' + x_2 r_2''} \tag{4}$$

The exponent *n* is taken as 2/3 or 3/4 and the pure component molecular size parameters r_i were obtained from Sørensen and Arlt [15].

The activity coefficients of two components are expressed as

$$\ln \gamma_{1} = \ln \frac{\phi_{1}'}{x_{1}} + 1 - \frac{\phi_{1}'}{x_{1}} - \ln(\phi_{1} + \phi_{2}\tau_{21}) - \left(1 - \frac{\phi_{1}}{x_{1}}\right) + \phi_{2}\left(\frac{\tau_{21}}{\phi_{1} + \phi_{2}\tau_{21}} - \frac{\tau_{12}/\rho_{12}}{\phi_{2} + \phi_{1}\tau_{12}}\right)$$
(5)

$$\ln \gamma_{2} = \ln \frac{\phi_{2}}{x_{2}} + 1 - \frac{\phi_{2}}{x_{2}} - \ln(\phi_{2} + \phi_{1}\tau_{12}) - \left(1 - \frac{\phi_{2}}{x_{2}}\right) + \phi_{1}\left(\frac{\tau_{12}}{\phi_{2} + \phi_{1}\tau_{12}} - \frac{\rho_{12}\tau_{21}}{\phi_{1} + \phi_{2}\tau_{21}}\right)$$
(6)

where $\rho_{12} = r_2/r_1$.

The binary parameters τ_{ii} are related to the energy parameters a_{ii}

$$\tau_{21} = \exp(-a_{21}/T) \tag{7}$$

$$\tau_{12} = \exp(-a_{12}/T) \tag{8}$$

We assume that the energy parameters can be expressed by a quadratic function of temperature

$$a_{21} = A_{21} + B_{21}T + C_{21}T^2 \tag{9}$$

$$a_{12} = A_{12} + B_{12}T + C_{12}T^2 \tag{10}$$

CALCULATED RESULTS

The mutual solubility points are calculated by solving the thermodynamic relations of isoactivity for components in equilibrated liquid phases

$$(x_1\gamma_1)^{\alpha} = (x_1\gamma_1)^{\beta} \tag{11}$$

$$(x_2\gamma_2)^{\alpha} = (x_2\gamma_2)^{\beta} \tag{12}$$

where the superscripts α and β indicate two liquid phases. All the

Component	r	Component	r		
Aniline	3.7165	Guaiacol	4.5306		
Benzene	3.1878	n-Hexadecane	11.2438		
1-Butanol	3.4543	n-Hexane	4.4998		
2-Butanone	3.2479	2-Isobutoxyethanol	5.0462		
2-Butoxyethanol	5.0470	Methanol	1.4311		
Cyclohexane	4.0464	<i>m</i> -Methylaniline	4.4515		
Diethylene glycol	4.0013	3-Methylpyridine	3.7343		
2,6-Dimethylpyridine	4.4693	Nicotine	6.4898		
Dipropylamine	5.0324	Phenol	3.5517		
Ethanol	2.1055	Propionic aldehyde	2.5735		
Ethylbutylamine	5.0324	1-Propoxy-2-propanol	5.0462		
1-Ethyl-3-isopropyl-glycerol ether	6.6381	2-Propoxy-1-propanol	5.0462		
Furfural	3.1680	Tetrahydrofuran	2.9415		
Glycerol	3.5857	Water	0.9200		

TABLE 1

Values of pure-component molecular size parameters

experimental values studied in this work were taken from Ochi et al. [16], Skrzecz [17], and the compilations of Sørensen and Arlt [15] and of Macedo and Rasmussen [18]. The experimental data of Ochi et al. were smoothed by Ochi. Table 1 shows the values of the pure-component molecular size parameters and Table 2 gives the calculated results for 23 binary systems. Both values of the index, n = 2/3 and n = 3/4, give nearly the same results except for the glycerol + *m*-methylaniline and tetrahydrofuran + water systems which show closed-loop coexistence curves (type II). For these two systems, an index value n = 3/4 improves significantly the deviations between the experimental values and calculated results. Figures 1–3 compare the calculated results with the experimental values for selected systems. As shown in Fig. 2 for the 2,6-dimethylpyridine + water and

Fig. 1. Calculated liquid-liquid equilibria for two systems with an upper critical solution temperature: \bullet , experimental; —, calculated using the exponent n = 3/4. (a) 1-Butanol + water, Ochi et al. (1990) [16]. (b) Furfural + cyclohexane, Pennington (1953) [15].

2	
Ш	
щ.	
<	

equilibria
liquid-liquid
ves of
e curv
coexistenc
binary
for
rcsults
Calculated

No.	Type ^a	System	Temperature	Index ^b	Average abs.	Parameters			References
		(1+2)	range °C		dev. mol.%	$A_{12} \ A_{21}$	B_{12} B_{21}	C ₁₂ C ₂₁	
_	-	Aniline + n -hexane	40.00-68.00	<	0.10	3013.270	-5.3193	0.0009	16
						-23517.039	156.0484	-0.2452	
				B	0.10	2874.314	-4.3025	-0.0023	
						-23630.476	156.9102	-0.2463	
2	I	1-Butanol + water	30.00-120.00	<	0.05	746.010	7.7042	-0.0123	16
						-4734.346	30.2779	-0.0413	
				В	0.06	-850.303	8.5792	-0.0135	
						-4871.085	31.4610	-0.0432	
e	Ι	2-Butanone + water	0.00 - 140.00	A	0.50	307.403	2.6424	-0.0049	16
						-5303.982	31.3702	-0.0422	
				В	0.45	193.148	3.5123	-0.0060	
						-5460.938	32.6178	-0.0440	
4	I	Diethylene glycol + benzene	30.00-80.00	A	1.02	-3580.927	25.5253	-0.0360	16
						-9075.718	68.0095	-0.1086	
				В	0.42	-3611.960	25.8476	-0.0363	
						-9122.338	68.7153	-0.1100	
S	I	Ethanol + n -hexadecane	25.00-52.10	A	1.71	7038.561	-42.0434	0.0607	19
						-28334.100	190.8129	-0.3121	
				В	1.59	7500.396	-44.7295	0.0656	
						-28043.191	190.1607	-0.3129	
9	I	Furfural + cyclohexane	16.30 - 66.30	×	0.13	-1376.336	18.4322	-0.0350	15
		×				-7933.519	63.1901	-0.1062	
				В	0.13	-1435.540	18.9680	-0.0357	
						-7986.555	63.6902	-0.1068	
7	-	Methanol + cyclohexane	29.19-45.14	A	1.85	-3654.467	28.1998	-0.0517	15
						-26403.899	184.0484	-0.3079	
				В	1.85	-4260.206	32.5080	-0.0587	
						-26945.815	187.9478	-0.3144	

No Z	Tvne "	Svstem	Temperature	lndev ^b	Average abs	Darametere			Deferences
		(1+2)	range °C		dev mol %				
) Simi			$oldsymbol{A}_{12}oldsymbol{A}_{21}$	$B_{12} B_{21}$	C_{12} C_{21}	
~		Methanol + n -hexane	-18.15-32.85	A	0.45	21.746	3.6213	-0.0116	17
						-990.151	19.4626	-0.0433	
				В	0.48	-14.627	4.2667	-0.0128	
						-1030.932	20.1297	-0.0446	
6	I	Phenol + n -hexane	30.00-52.00	۲	0.02	-3614.430	32.9790	-0.0590	16
						17031.168	-91.6590	0.1319	
				В	0.02	-3658.009	33.4368	-0.0596	
						16975.821	-91.1229	0.1312	
10	н	2-Butoxy-ethanol + water	50.00 - 130.00	۲	0.03	-3994.957	22.7995	-0.0304	16
						-1451.655	12.0208	-0.0156	
				в	0.03	-4470.479	25.5670	-0.0340	
						-2259.033	16.5260	-0.0217	
11	II	2,6-Dimethylpyridine +	45.30-164.90	A	1.49	-4516.455	24.9948	-0.0319	15
		water				2305.654	-9.7204	0.0143	
				в	1.43	-4942.922	27.4051	-0.0348	
						1470.828	-5.1914	0.0083	
12	II	Glycerol + guaiacol	39.50-83.50	A	1.86	-28537.074	174.4488	-0.2566	15
						-3658.704	25.1270	-0.0325	
				B	1.86	-28599.030	174.9365	-0.2571	
						-3763.692	25.8909	-0.0335	
13	Ш	Glycerol + <i>m</i> -methylanílíne	6.70-120.50	A	110.58	-10782.975	69.4397	-0.0998	15
						-4946.528	33.3150	-0.0437	
				B	13.51	-10861.059	69.7927	-0.0993	
						-5048.500	34.3095	-0.0455	
14	II	2-Isobutoxy-ethanol +	24.60-150.20	A	1.19	-4837.173	28.2932	-0.0383	15
		water				4900.773	-26.0347	0.0385	
				В	1.27	-5374.052	31.5004	-0.0426	
						3885.234	-20.2445	0.0306	
	III		26.21-38.10	۲	0.02	-960.865	3.2466	0.0021	15
						-44001.154	291.3727	-0.4761	
				¢		1615 001	1 00 F		

64

TABLE 2 Continued

15			15			15	3			15				15				15				15				15				18			
-0.0342	-0.0370	0.0228	-0.0296	-0.003	-0.0322	-0.0178	0.0330	-0.0407	0.0237	-0.0421	0.0378	-0.0462	0.0294	0.0728	-0.1030	-0.0170	-0.0806	0.0529	-0.0228	0.0516	-0.0159	-0.1543	0.2612	-0.1569	0.2217	0.0088	0.1030	0.0058	01.004	0.1239	-0.0916	0.1187	-0.0927
26.6142 -77 4348	29.1517	-17.1223	25.7296	7.9262	28.1244	15.0454 20.0790	-21.5659	31.2219	-15.1198	32.2442	-26.5626	35.3057	-19.9219	-56.4410	81.2213	12.7051	64.4865	-24.4033	9.5729	-22.7687	5.6900	104.7535	-169.6086	107.1155	-143.1999	1.9776	-57.8219	4.3551	-54.8817	-71.7580	61.5274	-68.1934	62.3861
-4809.518 4833 336	-5311.647	4072.856	-5101.490	-1141.343	-5564.991	-2581.797	3850.699	-5468.383	2815.458	-5746.131	5069.284	-6265.755	3820.268	11412.625	-15466.810	-1740.220	-12283.193	2819.578	-35.650	2493.755	514.551	-17372.032	27574.976	-17802.020	23216.972	-1004.398	8704.477	-1393.614	8113.831	11195.116	- 9998.857	10631.100	-10104.271
4.35	4.20		0.78		0.85	, , ,	07.7	2.51		0.51		0.44		56.39		8.99		1.13		1.13		0.94		0.88		0.35		0.32		0.21		0.23	
V	В		A		в		¢	В		A		в		Α		B		A		В		V		в		A		В		A		В	
49.40-152.50			61.50-233.00			01 121 03 12	01.11.1-00.40			42.80-162.00				71.80-137.10				10.00 - 40.00				34.10 - 78.40				-4.80-74.80				15.00-40.00			
3-Methylpyridine + water			Nicotine + water				vater			2-Propoxy-1-propanol +	watcr			Tetrahydrofuran + water				Ethylbutylamine + water				1-Ethyl-3-isopropyl-	glycerol ether +	water		Dipropylamine + water				Propionicaldehyde +	water		
II			II			F	1			II				Π				III				III				Ш				III			
15			16			ţ	/ 1			18				19				20				21				52				53			

^a L system with an unner critical solution temperature: IL system with a closed curve of partial miscibility: IIL mutual solubility increases with decreasing temperature.

1-propoxy-2-propanol + water systems, the present method is superior to the model of Yu and Nishiumi, who incorporated an equilibrium constant due to the hydrogen bonds between solvent and solute [7].

To check the physical significance of the parameters obtained, the activity coefficients and excess molar enthalpies in the miscible regions for a few selected systems were predicted using the coefficients given in Table 2. Figures 4–6 present a comparison of the experimental values and calculated results. For the methanol + cyclohexane or *n*-hexane and 1-butanol + water systems, the predicted activity coefficients agree well with the experimental values. However, for the ethanol + *n*-hexadecane system, the estimated results are considerably lower than the experimental values. Prediction of the excess molar enthalpies of the two systems gives very good results for the 1-butanol + water system and shows slightly higher values, but

Fig. 2. Calculated liquid-liquid equilibria for four systems with both upper and lower critical solution temperatures: \bullet , experimental; —, calculated by the present model with the exponent n = 3/4; ---, calculated by the model of Yu and Nishiumi [7]. (a) Nicotine + water, Campbell (1958) [15]. (b) 2-Propoxy-1-propanol + water, Cox (1927) [15]. (c) 2,6-Dimethylpyridine + water, Flaschner (1909) [15]. (d) 1-Propoxy-2-propanol + water, Cox (1927) [15].

Fig. 3. Calculated liquid-liquid equilibria for two systems with a lower critical solution temperature: \bullet , \blacktriangle , experimental; —, calculated by the present model with the exponent n = 3/4; ---, calculated by the model of Yu and Nishiumi [7]. (a) 2-Isobutoxyethanol + water: \bullet , Cox (1926) [15]; \bigstar , Rudd (1960) [15]. (b) 1-Ethyl-3-isopropylglycerol ether + water, Davison (1966) [15].

Fig. 4. Activity coefficients for (a) methanol + cyclohexane and (b) methanol + *n*-hexane: •, experimental; data of Hwang and Robinson [20] at 25°C; ----, calculated using the exponent n = 3/4.

Fig. 5. Activity coefficients for (a) ethanol + *n*-hexadecane and (b) 1-butanol + water: \bullet , experimental. (a) Data of French et al. [19] at 25°C. (b) Data of Lyzlova et al. [21] at 35°C. ----, Calculated using the exponent n = 3/4.

Fig. 6. Excess molar enthalpies for (a) methanol + cyclohexane and (b) 1-butanol + water: •, experimental. (a) Data of Dai and Chao [22] at 25°C. (b) Data of Goodwin and Newsham [23] at 30°C. —, Calculated using the exponent n = 3/4.

reproduces well the shape of the excess enthalpy curve for the methanol + cyclohexane system.

CONCLUSION

The capability of a new local composition model in reproducing the binary liquid-liquid equilibrium data of three different types over a wide temperature range has been studied. The model, called the extended-Wilson model, includes the modified Flory-Huggins term and the physical interaction term with two energy parameters, which are assumed to be a quadratic function of temperature. The model correlates well the experimental data points of the 23 systems studied.

ACKNOWLEDGEMENT

I. Nagata is grateful to the French Ministry of Education for financial support.

REFERENCES

- 1 J.C. Wheeler and G.R. Andersen, J. Chem. Phys., 73 (1980) 5778-5785.
- 2 G. Karlström, J. Phys. Chem., 89 (1985) 4962-4964.
- 3 G.M. Thurston, D. Blankschtein, M.R. Fisch and G.B. Benedek, J. Chem. Phys., 84 (1986) 4558-4562.
- 4 R.E. Goldstein, J. Chem. Phys., 84 (1986) 3367-3378.
- 5 Y.-C. Kim and J.-D. Kim, Fluid Phase Equilibria, 41 (1988) 229-244.
- 6 J.J. de Pablo and J.M. Prausnitz, AIChE J., 34 (1988) 1595-1606.
- 7 M. Yu and H. Nishiumi, J. Phys. Chem., 91 (1992) 842-845.
- 8 I. Nagata, Fluid Phase Equilibria, 1 (1977) 93–111.
- 9 J.P. Novák, J. Matouš and J. Pick, Liquid-Liquid Equilibria, Elsevier, Amsterdam, 1987.
- 10 I. Kikic, P. Alessi, P. Rasmussen and A. Fredenslund, Can. J. Chem. Eng., 58 (1980) 253-258.
- 11 E.R. Thomas and C.A. Eckert, Ind. Eng. Chem. Process Des. Dev., 23 (1984) 194-209.

- 12 L.A. Belfiore, A.A. Patwardhan and T.G. Lenz, Ind. Eng. Chem. Res., 27 (1988) 284-294.
- 13 J. Gmehling, D. Tiegs and U. Knipp, Fluid Phase Equilibria, 54 (1990) 147-165.
- 14 I. Nagata and J. Gmehling, Thermochim. Acta, 175 (1991) 281-292.
- 15 J.M. Sørensen and W. Arlt, Liquid-Liquid Equilibrium Data Collection, Binary Systems, Vol. V, Part 1, DECHEMA Chemistry Data Series, DECHEMA, Frankfurt am Main, Germany, 1979.
- 16 K. Ochi, M. Tada and K. Kojima, Fluid Phase Equilibria, 56 (1990) 341-359.
- 17 A. Skrzecz, Data submitted to IUPAC Project on VLE in 1-Alkanol + n-Alkane Mixtures, 1990.
- 18 E.A. Macedo and P. Rasmussen, Liquid-Liquid Equilibrium Data Collection (Supplement 1), Vol. V, Part 4, DECHEMA Chemistry Data Series, DECHEMA, Frankfurt am Main, Germany, 1987.
- 19 H.T. French, A. Richards and R.H. Stokes, J. Chem. Thermodyn., 11 (1979) 671-686.
- 20 S.C. Hwang and R.L. Robinson, Jr., J. Chem. Eng. Data, 22 (1977) 319-325.
- 21 J. Gmehling, U. Onken and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Aqueous-Organic Systems (Supplement 1), Vol. I, Part 1a, DECHEMA Chemistry Data Series, DECHEMA, Frankfurt am Main, Germany, 1981.
- 22 J. Gmehling and T. Holderbaum, Heats of Mixing Data Collection, Binary and Multicomponent Systems (Supplement 1), Vol. III, Part 3, DECHEMA Chemistry Data Series, DECHEMA, Frankfurt am Main, Germany, 1989.
- 23 C. Christensen, J. Gmehling, P. Rasmussen and U. Weidlich, Heats of Mixing Data Collection, Binary Systems, Vol. III, Part 1, DECHEMA Chemistry Data Series, DECHEMA, Frankfurt am Main, Germany, 1984.